pytest-invenio Documentation
Release 2.1.4

CERN

Jun 02, 2023

21 APIDocs

32 Changes
33 License

1 User’s Guide
1.1 Installation
2 API Reference
3 Additional Notes
3.1 Contributing
3.4 Contributors
Python Module Index
Index

1.2 Usageo vl

CONTENTS

13

............................ 13

21

............................ 21
............................ 23
............................ 26
............................ 26

27

29

pytest-invenio Documentation, Release 2.1.4

Pytest fixtures for Invenio.
The package offers a number of features to help test Invenio based applications:
* Less boilerplate: Using the fixtures you can keep your conftest.py short and focused.
» Database re-use: database tests are running inside a transaction which is rolled back after the test.

* End-to-end testing: Selenium tests can easily be switched on/off, and in case of test failures a screenshot is taken
(with possibility to output in the console in base64-encoding - useful on e.g. TravisCI).

* Application configuration for testing (e.g. disable CSRF protection in forms and HTTPS requirement).
* JSON decoding support in Flask test client for easier API testing.
* Batteries included: further fixtures help with e.g. mail sending and CLI tests.

Further documentation is available on https://pytest-invenio.readthedocs.io/.

CONTENTS 1

https://github.com/inveniosoftware/pytest-invenio/actions?query=workflow%3ACI
https://coveralls.io/r/inveniosoftware/pytest-invenio
https://pypi.org/pypi/pytest-invenio
https://pytest-invenio.readthedocs.io/

pytest-invenio Documentation, Release 2.1.4

2 CONTENTS

CHAPTER
ONE

USER’S GUIDE

This part of the documentation will show you how to get started in using pytest-invenio.

1.1 Installation

pytest-invenio is on PyPI so all you need is:

$ pip install pytest-invenio

Normally, you would add it to your package’s setup.py to have it automatically installed:

setup(
...
setup_requires=[
'pytest-runner>=3.0.0,<5",
1,
tests_require=[
'pytest-invenio>=1.0.0,<1.1.0",
]
)

Tip: Add the following alias to your setup.cfg:

[aliases]
test = pytest

In this way, the standard Python way of executing test still works:

$ python setup.py test

1.2 Usage

Pytest fixtures for Invenio.

pytest-invenio Documentation, Release 2.1.4

1.2.1 Quick start

1. Define a module-scoped fixture named create_app that returns an application factory for your Invenio instal-
lation. If you are using Invenio-App, it’s as simple as:

conftest.py
from invenio_app.factory import create_ui

@pytest. fixture(scope="module")
def create_app(Q):
return create_ui

2. Write tests:

test_something.py

def test_e2e(live_server, browser):
browser.get(url_for('index', _external=True))

def test_testclient(client):
res = client.get('/api/")
res.json == {'test-client': 'with-json-decoder'}

def test_db(base_app, db):
Database with rollback

def test_cli(cli_runner):
result = cli_runner (mycmd)
assert result.exit_code == 0

def test_mailbox(appctx, mailbox):
assert len(mailbox) == 1

1.2.2 Running tests

Running tests with py.test is pretty simple. Your package might support the standard way of running tests:

$ python setup.py test

Alternatively you can use the pytest command to run all or specific test cases:

$ pytest
$ pytest tests/test_something.py
$ pytest tests/test_something.py::test_acase

4 Chapter 1. User’s Guide

pytest-invenio Documentation, Release 2.1.4

1.2.3 Fixtures

All available fixtures are documented in the API documentation (see Fixtures).

In addition to the ones provided by pytest-invenio, there are further fixtures defined pytest-flask (see documentation for
details).

1.2.4 Structuring tests

The pytest fixtures in pytest-invenio all work on one Flask application, however most Invenio instances usually consits
of two Flask applications: Ul and API. Thus, to use the pytest-invenio fixtures it’s important to understand how to
structure your tests, and know exactly which application you are dealing with.

Scope

Most of pytest-invenio fixtures are either module scoped or function scoped.
* Module scoped fixtures are created/destroyed once per Python test file.
* Function scoped fixtures are created/destroyed per test.

The fixtures which creates the database and applications are module scoped, hence, all tests in a Python file run against
either the UI or the API application, but not both.

Note: All tests in a single file, run against the one and only one application (e.g. UI or REST).

Thus, in a single test file you cannot mix both UI and API tests, which is normally not an issue.

Overriding fixtures

Pytest provides rich support for overriding fixtures at various level and combined with module/function-scoped we can
easily override fixtures. Also, you can use conftest.py to define per-directory fixtures.

Following is an example of how fixtures overriding works:

conftest.py:

@pytest.fixture()

def myfix(Q):
return 'root'

test_root.py
def test_a(myfix):
print (myfix)
will output "root"

a/conftest.py

@pytest.fixture()

def myfix(myfix):
return myfix + '-a'

a/test_subdir.py
def test_a(myfix):

(continues on next page)

1.2. Usage 5

http://pytest-flask.readthedocs.io/en/latest/

pytest-invenio Documentation, Release 2.1.4

(continued from previous page)

print (myfix)
will output "root-a"

Notice that:

e Overriding: In a/test_subdir. py the fixture myfix is coming from a/conftest.py which is overriding the
fixture from conftest.py. In test_root.py it’s however the myfix fixture from conftest.py being used.

* Parent fixture: In a/conftest.py, the fixture my£fix has access to the parent fixture from conftest.py.

Recommend layout

If you are using Invenio-App (recommended), then the following layout is recommended:

tests/conftest.py
Common application configuration goes here
@pytest.fixture(scope="module")
def app_config(app_config):
app_config['MYCONF'] = True
return app_config

tests/ui/conftest.py
UI tests goes in tests/ui/ folder.
from invenio_app.factory import create_ui

@pytest.fixture(scope="module")
def create_app(Q):
return create_ui

tests/api/confest.py
API tests goes in tests/api/ folder.
from invenio_app.factory import create_api

@pytest.fixture(scope="module")
def create_app(Q):
return create_api

tests/el2e/conftest.py
E2E tests (requring both UI/API) goes in tests/e2e/ folder.
from invenio_app.factory import create_app as create_ui_api

@pytest.fixture(scope="module")
def create_app(Q):
return create_ui_api

Using above layout you essentially split your tests into three folders:

tests/ui/
tests/api/
tests/e2e/

Each subfolder holds tests related to a specific application (UI or API). The e2e folder holds tests that need both Ul
and API application (which is typically the case for end-to-end tests). The E2E tests works by creating both the UI and

6 Chapter 1. User’s Guide

pytest-invenio Documentation, Release 2.1.4

API applications and using a special WSGI middleware to dispatch requests between both applications. Having two
applications at the same time, can however cause quite a lot of confusion so it is only recommended for E2E tests.

Note, also in above example how all three applications are sharing the same app_config fixture.

Note: You shouldn’t feel bound to above structure. If you site grows large, you’ll likely split tests into further subfold-
ers. The important message from the recommended layout, is that you need one folder per application.

1.2.5 Application fixtures

The package provides three different application fixtures:
* base_app: Basic application fixture which creates the Flask application.

e appctx: Same as the basic application fixture, but pushes an application context onto the stack (i.e. makes
current_app work).

e app: Same as the basic application, but in addition it initializes the database and search indices.

All three fixtures depend on the same user-provided (i.e. you must define it) fixture named create_app which must
return an application factory (see Quick start).

Customizing configuration

The application fixtures rely on fixtures such as instance_path, app_config, celery_config_ext, db_uri,
broker_uri to inject configuration into the application.

You can overwrite each of these fixtures at many different levels:

* Global: Override one or more of these fixtures in your global conftest.py to inject the same configuration in
all applications.

* Per-directory: Override fixtures for a specific subdirectory by putting a conftest.py in the directory.

 Per-file: Fixtures can also be overwritten in specific modules. For instance you may want to customize the celery
configuration only for a specific Python test file.

Injecting entry points
Invenio relies heavily upon entry points for constructing a Flask application, and it can be rather cumbersome to try to
manually register database models, mappings and other features afterwards.

You can therefore inject extra entry points if needed during testing via the extra_entry_points fixture and use it in
your custom create_app () fixture:

@pytest.fixture(scope="module")
def extra_entry_points():
return {
'invenio_db.models': [
'mock_module = mock_module.models',

}

@pytest.fixture(scope="module")

(continues on next page)

1.2. Usage 7

pytest-invenio Documentation, Release 2.1.4

(continued from previous page)

def create_app(entry_points):
return _create_api

Note that create_app () depends on the entry_points fixture not the extra_entry_points().

1.2.6 Views testing

Views can easily be testing using the Flask test clients. Two test clients are provided for convenience: base_client
and client. The only difference is which application fixture they depend on:

def test_viewl(base_client):
Depends on 'base_app' fixture
base_client.get(url_for(..))

def test_view2(client):
Depends on 'app' fixture
client.get(url_for(..))

JSON responses

The default Flask test client does not have built-in support for decoding JSON responses, which can make API testing
a bit cumbersome. The test clients are therefore patched to add a JSON property:

def test_api(base_client):
res = base_client.get(...)
assert res.json == { ... }

1.2.7 Database re-use
The default database is an SQLite database located in the application’s instance folder. This can easily be overwritten by
setting the environment variable SQLALCHEMY_DATABASE_URT (useful e.g. in CI systems to test multiple databases).

Tests that make changes to the database should explicitly use the function scoped db fixture. This fixture wraps the
changes in a transaction and rollback any changes by the end of the test. For instance:

def test_dbl(db):
db.session.add(User(username="alice"'))
db.session.commit ()
assert User.query.count() == 1 # i.e. independent of test_db2

def test_db2(db):
db.session.add(User(username="bob"))
db.session.commit ()
assert User.query.count() == # i.e. independent of test_dbl

Note: Take care! The db fixture does not rollback other changes. If data, in addition to being added to the database,
is also indexed in the search cluster then you should clear the index explicitly using e.g. search_clear.

8 Chapter 1. User’s Guide

pytest-invenio Documentation, Release 2.1.4

Performance considerations

The database is recreated (all tables dropped and recreated) for each test file, because the database is a module scoped
fixture. This adds a performance overhead, thus be careful not to indirectly depend on the database fixtures in a file
unless it is really necessary (e.g. via the app fixture).

1.2.8 Search testing

Pytest-Invenio depends on Invenio-Search and any mappings registered on Invenio-Search will be created if you depend
on the search fixture. The fixture is module scoped, meaning that any fixture you write to e.g. load test data should
likely also be module scoped.

Clearing changes

Unlike the database fixture, which automatically rollback changes, you must explicitly depend on the search_clear
fixture if you makes changes to the indexes. This ensures that you leave the indexes in a clean state for the next test.
The search_clear fixture will however delete and recreate the indexes, and thus comes with a performance penalty
if used.

def test_searchl(search_clear):
...

Performance considerations

As for the database fixtures, search indices are deleted and recreated for each test file (due to module scoped fixture).
Thus be careful not to indirectly depend on the database fixtures in a file unless it is really necessary (e.g. via the app
fixture).

1.2.9 CLI testing

Pytest-Invenio provides two quick short cuts for easier testing Click-based commands that require an application context
(i.e. most commands).

The shortest version is to use the c1i_runner fixture:

def test_cmd(cli_runner):
result = cli_runner (mycmd)
assert result.exit_code == 0

The downside is that the Click CLIRunner is recreated for each call. This is not necessary, so an alternative is to use
the script_info fixture, which however is more verbose:

def test_cmd(script_info):
runner = CliRunner()
result = runner.invoke(mycmd, obj=script_info)
assert result.exit_code ==

1.2. Usage 9

pytest-invenio Documentation, Release 2.1.4

1.2.10 Mail testing

If you have Invenio-Mail installed on your application, you can use the mailbox fixture to test email sending. Any
message sent by the application during the test will be captured and is inspectable in via the fixture:

def test_mailbox(appctx, mailbox):

assert len(mailbox) ==

appctx.extensions['mail'].send_message(
sender="no-reply@localhost"',
subject="testing',
body="test"',
recipients=["'no-reply@localhost'],)

assert len(mailbox) ==

1.2.11 End-to-end testing

In addition to using the Flask test client for testing views (see Views testing), you can use a real browser via the Selenium
integration for fully end-to-end testing. The tests works by starting the Flask application in a separate process, and using
Selenium to drive your favorite browser. Writing the tests are very easy, simply depend on the 1live_server fixture
(defined by pytest-flask) and the browser fixture:

def test_browser(live_server, browser):
Note the use of '_external=True'
browser.get(url_for('index', _external=True))

Running E2E tests

By default, tests using the browser fixture are skipped. In order to run these tests, you must set an environment
variable:

$ export E2E=yes

Also, by default Chrome is used. If you’d like to use Firefox, Safari or another browser you must set another environment
variable:

$ export E2E_WEBDRIVER_BROWSERS="Firefox"

Note: You must have Selenium Client and the Chrome Webdriver installed on your system in order to run the E2E
tests.

Screenshots

The browser fixture will take a screenshot of in case of test failures and store it in a folder .e2e_screenshots. On
CI systems you can also have screenshot printed to the console by setting an environment variable:

$ export E2E_OUTPUT=base64

10 Chapter 1. User’s Guide

pytest-invenio Documentation, Release 2.1.4

TravisCl integration

Following is an example of the needed changes (at time of writing) to your . travis.yml in case want to run E2E tests
on Travis. Travis is likely to evolve, so please refer to the Travis CI documentation for the latest information.

Install Chrome
- see https://docs.travis-ci.com/user/chrome
addons:

chrome: stable

Chrome driver fails if not trusty dist
dist: trusty

Selenium webdriver for Chrome fails if not on sudo
- see https://github.com/travis-ci/travis-ci/issues/8836
sudo: true

Define environment variables to enable E2E tests and outputing
screenshots to the console.
env:

global:

Print screenshots to console output

E2E_OUTPUT=base64
Enable end-to-end tests
- E2E=yes

Install Chrome webdriver for Selenium
before_install:

- "PATH=$PATH: $HOME /webdrivers"

- "if [! -f $HOME/webdrivers/chromedriver]; then wget https://chromedriver.storage.
—googleapis.com/2.31/chromedriver_linux64.zip -P $HOME /webdrivers; unzip -d $HOME/
—webdrivers $HOME/webdrivers/chromedriver_linux64.zip; fi" # noqga

Start a virtual display
- https://docs.travis-ci.com/user/gui-and-headless-browsers/
before_script:

- "export DISPLAY=:99.0"

- "sh -e /etc/init.d/xvfb start"

- sleep 3 # give xvfb some time to start

1.2. Usage 11

pytest-invenio Documentation, Release 2.1.4

12 Chapter 1. User’s Guide

CHAPTER
TWO

API REFERENCE

If you are looking for information on a specific function, class or method, this part of the documentation is for you.

2.1 API Docs

2.1.1 Fixtures

Pytest fixtures for Invenio.

class pytest_invenio.fixtures.MockDistribution(extra_entry_points)

A mocked distribution that we can inject entry points with.
Initialise the extra entry point.

class pytest_invenio.fixtures.MockImportlibDistribution (extra_entry_points)
A mocked distribution where we can inject entry points.

Entry points for the distribution.

property entry_points
Iterate over entry points.

property name
Return the ‘Name’ metadata for the distribution package.

pytest_invenio.fixtures.UserFixture()

Fixture to help create user fixtures.

Scope: session

@pytest.fixture()
def myuser(UserFixture, app, db):

u = UserFixture(
email="myuser@inveniosoftware.org",
password="auser",

)

u.create(app, db)

return u

def test_with_user(service, myuser):
service.dosomething(myuser.identity)

13

pytest-invenio Documentation, Release 2.1.4

pytest_invenio.fixtures.app(base_app, search, database)

Invenio application with database and search.
Scope: module

See also base_app for an Invenio application fixture that does not initialize database and search.

pytest_invenio.fixtures.app_config(db_uri, broker_uri, celery_config_ext)

Application configuration fixture.
Scope: module

This fixture sets default configuration for an Invenio application to make it suitable for testing. The database and
broker URL are injected into the config, CSRF-protection in forms disabled, HTTP secure headers is disabled,
mail sending is output to console.

The fixture can easily be customized in your conftest.py or specific test module:

conftest.py
import pytest

pytest. fixture(scope="module")

def app_config(app_config):
app_config['MYVAR'] = 'test'
return app_config

pytest_invenio. fixtures.appctx(base_app)

Application context for the current base application.
Scope: module

This fixture pushes an application context on the stack, so that current_app is defined and e.g url_for will
also work.

pytest_invenio. fixtures.base_app (create_app, app_config, request, default_handler)

Base application fixture (without database, search and cache).
Scope: module.

This fixture is responsible for creating the Invenio application. It depends on an application factory fixture that
must be defined by the user.

confest.py
import pytest

@pytest. fixture(scope="module)

def create_app(Q):
from invenio_app.factory import create_api
return create_api

It is possible to overide the application factory for a specific test module, either by defining a fixture like above
example, or simply setting the create_app property on the module:

test_something.py

from invenio_app.factory import create_api
create_app = create_api

(continues on next page)

14

Chapter 2. API Reference

pytest-invenio Documentation, Release 2.1.4

(continued from previous page)

def test_acase(base_app):

pytest_invenio. fixtures.base_client (base_app)

Test client for the base application fixture.
Scope: function

If you need the database and search indexes initialized, simply use the Pytest-Flask fixture client instead. This
fixture is mainly useful if you need a test client without needing to initialize both the database and search indexes.

pytest_invenio.fixtures.broker_uri()
Broker URI (defaults to an RabbitMQ on localhost).

Scope: module
The broker can be overwritten by setting the BROKER_URL environment variable.

pytest_invenio.fixtures.browser (request)

Selenium webdriver fixture.
Scope: session

The fixture initializes a Selenium webdriver which can be used for end-to-end testing of your application:

from flask import url_for

def test_browser(live_server, browser):
browser.get(url_for('index', _external=True))

The live_server fixture is provided by Pytest-Flask and uses the app fixture to determine which application
to start.

Note: End-to-end test are only executed if the environment variable E2E is set to yes:

$ export E2E=yes

This allows you to easily switch on/off end-to-end tests.

By default, a Chrome webdriver client will be created. However, you can customize which browsers to test via
the E2E_WEBDRIVER_BROWSERS environment variable:

$ export E2E_WEBDRIVER_BROWSERS="Chrome Firefox"

If multiple browsers are requested, each test case using the browser fixture will be parameterized with the list
of browsers.

In case the test fail, a screenshot will be taken and saved in folder .e2e_screenshots.

pytest_invenio. fixtures.bucket_£from_dir (db, location)
Creates a bucket from the specified directory.

Scope: function

Use this fixture if your test requires a files bucket. The bucket_from_dir fixture returns a function with the
following signature:

2.1. APl Docs 15

https://invenio-files-rest.readthedocs.io/en/latest/api.html#invenio_files_rest.models.Bucket

pytest-invenio Documentation, Release 2.1.4

def create_bucket_from_dir(source_dir, location_obj=None):
"""Create bucket from the specified source directory.

:param source_dir: The directory to create the bucket from.

:param location_obj: Optional location object to use. If None
is specified, get the current default location.

:returns: The new bucket object.

i

Below is an example of how to use the bucket_from_dir fixture:

def test_with_bucket(bucket_from_dir):
bucket = bucket_from_dir('/my/directory/path')
... use the bucket for your test

pytest_invenio.fixtures.celery_config()

Empty celery config.

pytest_invenio. fixtures.celery_config_ext (celery_config)

Celery configuration (defaults to eager tasks).
Scope: module

This fixture provides the default Celery configuration (eager tasks, in-memory result backend and exception
propagation). It can easily be overwritten in a specific test module:

test_something.py
import pytest

pytest. fixture(scope='"module')

def celery_config_ext(celery_config_ext):
celery_config_ext['CELERY_TASK_ALWAYS_EAGER'] = False
return celery_config_ext

pytest_invenio. fixtures.cli_runner (base_app)

Create a CLI runner for testing a CLI command.

Scope: module

def test_cmd(cli_runner):
result = cli_runner (mycmd)
assert result.exit_code ==

pytest_invenio. fixtures.database (appctx)

Setup database.
Scope: module

Normally, tests should use the function-scoped db fixture instead. This fixture takes care of creating the
database/tables and removing the tables once tests are done.

pytest_invenio. fixtures.db(database)

Creates a new database session for a test.
Scope: function

You must use this fixture if your test connects to the database. The fixture will set a save point and rollback all
changes performed during the test (this is much faster than recreating the entire database).

16

Chapter 2. API Reference

pytest-invenio Documentation, Release 2.1.4

pytest_invenio. fixtures.db_uri (instance_path)
Database URI (defaults to an SQLite datbase in the instance path).

Scope: module

The database can be overwritten by setting the SQLALCHEMY_DATABASE_URI environment variable to a
SQLAIchemy database URIL.

pytest_invenio.fixtures.default_handler()
Flask default logging handler.

Flask 0.13/1.0 changed logging to not add the default handler in case a handler is already installed. pytest
automatically adds a handler to the root logger, causing Flask not to add a handler. This is an issue when testing
Click output which uses the logger to output to the console.

pytest_invenio. fixtures.entry_points (extra_entry_points)
Entry points fixture.

Scope: module

Invenio relies heavily on Python entry points for constructing an application and it can be rather cuambersome to
try to register database models, search mappings etc yourself afterwards.

This fixture allows you to inject extra entry points into the application loading, so that you can load e.g. a testing
module or test mapping.

To use the fixture simply define the extra_entry_points() fixture, and then depend on the entry_points()
fixture in your create_app fixture:

@pytest. fixture(scope="module")
def extra_entry_points():
return {
'invenio_db.models': [
'mock_module = mock_module.models"',

}

@pytest. fixture(scope="module")
def create_app(instance_path, entry_points):
return _create_api

pytest_invenio. fixtures.es(search)

Alias for search fixture.

pytest_invenio.fixtures.es_clear (search_clear)

Alias for search_clear fixture.

pytest_invenio.fixtures.extra_entry_points()
Extra entry points.

Overwrite this fixture to define extra entry points.

pytest_invenio.fixtures.instance_path()

Temporary instance path.
Scope: module

This fixture creates a temporary directory and sets the INSTANCE_PATH environment variable to this directory.
The directory is automatically removed.

2.1. APl Docs 17

pytest-invenio Documentation, Release 2.1.4

pytest_invenio.fixtures.location(database)

Creates a simple default location for a test.
Scope: function

Use this fixture if your test requires a files location. The location will be a default location with the name
pytest-location.

pytest_invenio.fixtures.mailbox (base_app)
Mailbox fixture.

Scope: function

This fixture provides a mailbox that captures all outgoing emails and thus easily allow you to test mail sending
in your app:

def test_mailbox(appctx, mailbox):
appctx.extensions['mail'].send_message(
sender="'no-reply@localhost"',
subject="'Testing',
body="Test ",
recipients=['no-reply@localhost'])
assert len(mailbox) ==

pytest_invenio. fixtures.script_info (base_app)
Get ScriptInfo object for testing a CLI command (DEPRECATED).

Scope: module
Use the cli_runner runner fixture directly, or use the base_app:

pytest_invenio.fixtures.search(appctx)

Setup and teardown all registered search indices.
Scope: module

This fixture will create all registered indexes in search and remove once done. Fixtures that perform changes
(e.g. index or remove documents), should used the function-scoped search_clear fixture to leave the indexes
clean for the following tests.

pytest_invenio. fixtures.search_clear (search)

Clear search indices after test finishes (function scope).
Scope: function

This fixture rollback any changes performed to the indexes during a test, in order to leave search in a clean state
for the next test.

2.1.2 Plugin

Pytest plugin for Invenio.

The plugin adds fixtures to help with creation of applications as well as configuring and initializing the database and
search engine.

Additional the plugin helps with configuring end-to-end tests with selenium and taking screenshots of failed selenium
tests (useful for inspecting why the test failed on CI systems).

18 Chapter 2. API Reference

https://invenio-files-rest.readthedocs.io/en/latest/api.html#invenio_files_rest.models.Location

pytest-invenio Documentation, Release 2.1.4

pytest_invenio.plugin.pytest_generate_tests (metafunc)
Skip end-to-end tests unless requested via E2E env variable.
A screenshot is taken in case of test failures. Set the environment variable E2E_OUTPUT to base64 to have

the base64 encoded screenshot printed to stdout (useful in e.g. CI systems). Screenshots are saved to an .
e2e_screenshots folder.

Overrides pytest’s default test collection function to skip tests using the browser fixture, unless the environment
variable E2E is set to yes.

Each test using the browser fixture is parameterized with the list of browsers declared by the
E2E_WEBDRIVER_BROWSERS environment variable. By default only Chrome is tested.

pytest_invenio.plugin.pytest_runtest_makereport (item, call)
Add hook to track if the test passed or failed.

2.1. APl Docs 19

pytest-invenio Documentation, Release 2.1.4

20 Chapter 2. API Reference

CHAPTER
THREE

ADDITIONAL NOTES

Notes on how to contribute, legal information and changes are here for the interested.

3.1 Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

3.1.1 Types of Contributions

Report Bugs

Report bugs at https://github.com/inveniosoftware/pytest-invenio/issues.
If you are reporting a bug, please include:
* Your operating system name and version.
* Any details about your local setup that might be helpful in troubleshooting.

¢ Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature” is open to whoever wants to implement
it.

21

https://github.com/inveniosoftware/pytest-invenio/issues

pytest-invenio Documentation, Release 2.1.4

Write Documentation

pytest-invenio could always use more documentation, whether as part of the official pytest-invenio docs, in docstrings,
or even on the web in blog posts, articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/inveniosoftware/pytest-invenio/issues.

If you are proposing a feature:

 Explain in detail how it would work.

» Keep the scope as narrow as possible, to make it easier to implement.

* Remember that this is a volunteer-driven project, and that contributions are welcome :)

3.1.2 Get Started!

Ready to contribute? Here’s how to set up pytest-invenio for local development.

L.
2.

Fork the inveniosoftware/pytest-invenio repo on GitHub.

Clone your fork locally:
$ git clone git@github.com:your_name_here/pytest-invenio.git
Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up

your fork for local development:

$ mkvirtualenv pytest-invenio
$ cd pytest-invenio/
$ pip install -e .[all]

Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

. When you’re done making changes, check that your changes pass tests:

$./run-tests.sh

The tests will provide you with test coverage and also check PEPS (code style), PEP257 (documentation), flake8
as well as build the Sphinx documentation and run doctests.

Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -s
-m "component: title without verbs"

-m "* NEW Adds your new feature."

-m "* FIX Fixes an existing issue."

-m "* BETTER Improves and existing feature."

-m "* Changes something that should not be visible in release notes."

$ git push origin name-of-your-bugfix-or-feature

22

Chapter 3. Additional Notes

https://github.com/inveniosoftware/pytest-invenio/issues

pytest-invenio Documentation, Release 2.1.4

7. Submit a pull request through the GitHub website.

3.1.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:
1. The pull request should include tests and must not decrease test coverage.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function with
a docstring.

3. The pull request should work for Python 3.7, 3.8, and 3.9. Check https://github.com/inveniosoftware/
pytest-invenio/actions?query=event%3Apull_request and make sure that the tests pass for all supported Python
versions.

3.2 Changes

Version 2.1.4 (released 2023-06-02)
* user fixture: use identity ID as int
Version 2.1.3 (released 2023-04-13)
* yanked, because of an incompatibility with Flask-SQLAlchemy v3.
Version 2.1.2 (released 2023-03-20)
* disable request rate-limiting
Version 2.1.1 (released 2022-10-25)
* pin pytest version
Version 1.4.15 (released 2022-10-04)
* Pin docker-services-cli<0.5.0, which drops Elasticsearch v6.
Version 1.4.14 (yanked)
Version 2.1.0 (released 2022-10-03)
* Adds support for OpenSearch v2
Version 2.0.0 (released 2022-09-23)
 Use invenio-search v2 and replaces Elasticsearch with OpenSearch, including fixture names.
* Deprecate previous fixtures named with es prefix.
* Remove upper pin of pytest.
Version 1.4.13 (released 2022-08-09)
* Fix pycodestyle dependency
Version 1.4.12 (released 2022-08-08)
* Fix flask-login dependency
Version 1.4.11 (released 2022-05-05)
» Upper pin Selenium dependency, v4 drops support for Python 3.7.
Version 1.4.10 (released 2022-05-04)

3.2. Changes 23

https://github.com/inveniosoftware/pytest-invenio/actions?query=event%3Apull_request
https://github.com/inveniosoftware/pytest-invenio/actions?query=event%3Apull_request

pytest-invenio Documentation, Release 2.1.4

* Fixes an issue with the user id in the UserFixture being None before the db session is flushed.
Version 1.4.9 (released 2022-05-02)

* Mark users as changed and commit through datastore (outside of context manager).
Version 1.4.8 (yanked 2022-05-02 due to UserFixture session close issues)

* Commit users through the datastore in the UserFixture.
Version 1.4.7 (released 2022-04-04)

¢ Adds support for Flask v2.1
Version 1.4.6 (released 2022-02-29)

* Adds support for Invenio-Accounts 2.0 in the UserFixture.
Version 1.4.5 (released 2022-02-23)

« Fixes an import so that pytest-invenio is now usable without Invenio-Accounts installed.
Version 1.4.4 (released 2022-02-21)

* Adds new UserFixture for easier test user creation.
Version 1.4.3 (released 2022-02-18)

* Adds support for using importlib_metadata to read the patched entry points.
Version 1.4.2 (released 2021-05-11)

* Add APP_THEME and THEME_ICONS in default app config, often needed when testing invenio packages that
will render templates.

Version 1.4.1 (released 2020-12-17)
* Remove pytest-celery because it’s still an alpha release.
Version 1.4.0 (released 2020-09-16)

* BACKWARD INCOMPATIBLE: Changes to use isort, pycodestyle and pydocstyle via pytest plugins. You
need to update pytest.ini and remove the --pep8 from the addopts and instead add --isort --pydocstyle
--pycodestyle:

addopts = --isort --pydocstyle --pycodestyle ...

In ./run-tests.sh script you should also remove calls to pydocstyle and isort as both are now integrated with pytest.

* BACKWARD INCOMPATIBLE: Upgrade dependencies: coverage, pytest-flask, check-manifest, pytest. You
need to set the pytest-flask live server fixture scope in your pytest config:

[pytest]
live_server_scope = function

* Decommission pytest-pep8 (last release in 2014) in favour of pycodestyle.
Version 1.3.4 (released 2020-09-15)

* Add entrypoints fixture to allow injecting extra entry points during testing so that you avoid manual registration
of e.g. mappings and schemas.

Version 1.3.3 (released 2020-08-27)
* Add docker-services-cli as dependency to enable Invenio modules to perform reproducible tests.

Version 1.3.2 (released 2020-05-19)

24 Chapter 3. Additional Notes

pytest-invenio Documentation, Release 2.1.4

* Move check-manifest, coverage, isort, pydocstyle, pytest-flask and pytest-pep8 from test to install requirements
to provide them as centrally managed dependencies.

Version 1.3.1 (released 2020-05-12)
* Uninstalls numpy in Travis due to incompatibilities with elasticsearch-py.
Version 1.3.0 (released 2020-03-19)
* Removes support for Python 2.7.
Version 1.2.2 (released 2020-05-07)
¢ Uninstalls numpy in Travis due to incompatibilities with elasticsearch-py.
* Deprecated Python versions lower than 3.6.0. Now supporting 3.6.0.
» Set maximum version of Werkzeug to 1.0.0 due to incompatible imports.
¢ Set maximum version of Flask to 1.1.0 due to incompatible imports.
* Set maximum version of Pytest-Flask to 1.0.0 due to breaking changes.
* Set minimum version of Invenio-Search to 1.2.3 and maximum to 1.3.0.
Version 1.2.1 (released 2019-11-13)
« Fixes instance path fixture to also set the static folder.
Version 1.2.0 (released 2019-07-31)
* Adds fixture for creating default Location.
* Adds fixture for creating Bucket from directory with files.
Version 1.1.1 (released 2019-05-21)
* Adds pytest-cov as install dependency.
Version 1.1.0 (released 2019-02-15)

* Changes name of fixture from celery_config to celery_config_ext due to unreliable overwriting of celery_config
fixture name.

Version 1.0.6 (released 2018-12-03)
* Fixes overwriting of celery_config fixture
Version 1.0.5 (released 2018-10-08)
* Adds default Content Security Policy header to the app configuration.
* Fixes issue with default tests scope.
Version 1.0.4 (released 2018-08-14)
* Bumps pytest minimun version to 3.8.0.
Version 1.0.3 (released 2018-09-05)

* Moves module dependent imports inside the fixture functions in order to decouple dependencies for Invenio apps
or modules that might not be using them.

Version 1.0.2 (released 2018-05-25)
Version 1.0.1 (released 2018-04-17)
Version 1.0.0 (released 2018-03-22)

3.2. Changes 25

pytest-invenio Documentation, Release 2.1.4

3.3 License

MIT License
Copyright (C) 2018 CERN.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

In applying this license, CERN does not waive the privileges and immunities granted to it by virtue of its status as an
Intergovernmental Organization or submit itself to any jurisdiction.

3.4 Contributors

¢ Alexander Ioannidis
* Chiara Bigarella
Esteban J. G. Gabancho

e Lars Holm Nielsen

26 Chapter 3. Additional Notes

P

pytest_invenio, 3
pytest_invenio. fixtures, 13
pytest_invenio.plugin, 18

PYTHON MODULE INDEX

27

pytest-invenio Documentation, Release 2.1.4

28 Python Module Index

A

app O (in module pytest_invenio.fixtures), 13
app_config() (in module pytest_invenio.fixtures), 14
appctx () (in module pytest_invenio.fixtures), 14

B

base_app () (in module pytest_invenio.fixtures), 14

base_client () (in module pytest_invenio.fixtures), 15

broker_uri() (in module pytest_invenio.fixtures), 15

browser () (in module pytest_invenio.fixtures), 15

bucket_from_dir () (in module pytest_invenio.fixtures),
15

C

celery_config() (in module pytest_invenio.fixtures),
16

celery_config_ext() (in
pytest_invenio.fixtures), 16

cli_runner () (in module pytest_invenio.fixtures), 16

D

database() (in module pytest_invenio.fixtures), 16

db () (in module pytest_invenio.fixtures), 16

db_uri () (in module pytest_invenio.fixtures), 17

default_handler () (in module pytest_invenio.fixtures),
17

module

E

INDEX

M

mailbox () (in module pytest_invenio.fixtures), 18
MockDistribution (class in pytest_invenio.fixtures), 13
MockImportlibDistribution (class in
pytest_invenio.fixtures), 13
module
pytest_invenio, 3
pytest_invenio. fixtures, 13
pytest_invenio.plugin, 18

N

name (pytest_invenio.fixtures.MockImportlibDistribution
property), 13

P

pytest_generate_tests() (in module
pytest_invenio.plugin), 18
pytest_invenio
module, 3
pytest_invenio.fixtures
module, 13
pytest_invenio.plugin
module, 18
pytest_runtest_makereport() (in module

pytest_invenio.plugin), 19

S

script_info () (in module pytest_invenio.fixtures), 18

entry_points (pytest_invenio.ﬁxtures.MocklmportlibDistr;;bégio&lO (in module pytest_invenio.fixtures), 18

property), 13
entry_points() (in module pytest_invenio.fixtures), 17
es () (in module pytest_invenio.fixtures), 17
es_clear() (in module pytest_invenio.fixtures), 17
extra_entry_points() (in module
pytest_invenio.fixtures), 17

instance_path() (in module pytest_invenio.fixtures),
17

L

location() (in module pytest_invenio.fixtures), 17

search_clear() (in module pytest_invenio.fixtures), 18

UserFixture() (in module pytest_invenio.fixtures), 13

29

	User’s Guide
	Installation
	Usage
	Quick start
	Running tests
	Fixtures
	Structuring tests
	Scope
	Overriding fixtures
	Recommend layout

	Application fixtures
	Customizing configuration
	Injecting entry points

	Views testing
	JSON responses

	Database re-use
	Performance considerations

	Search testing
	Clearing changes
	Performance considerations

	CLI testing
	Mail testing
	End-to-end testing
	Running E2E tests
	Screenshots
	TravisCI integration

	API Reference
	API Docs
	Fixtures
	Plugin

	Additional Notes
	Contributing
	Types of Contributions
	Report Bugs
	Fix Bugs
	Implement Features
	Write Documentation
	Submit Feedback

	Get Started!
	Pull Request Guidelines

	Changes
	License
	Contributors

	Python Module Index
	Index

